Introduction and Overview

CoMFRE: Vision and Mission

Center established in Dec 2017

Vision

Iowa State University will be a global leader in multiphase flow science and its engineering application to energy, healthcare, materials design, advanced manufacturing, sustainability and infrastructure

Mission

- Conduct critical, unique and high-risk research
- Broaden the impact of multiphase flow research
- Develop a skilled workforce
- Integrate the activities and expertise of individual research leaders to accelerate knowledge transfer
Multiphase Flow Research at ISU

1980: CFD Center
2002: Ames Lab Funding
2009: GAMS
2014: CoMFRE

Areas of Expertise

- Multiphase Flow Theory & Modeling
- Experiments
- Algorithms & HPC
- Data Analytics & IoT

CoMFRE: Leadership Organization

Executive Director: Rodney Fox
Director: Ted Heindel
Team Leader: Baskar Ganapathysubramanian

Associate Director: Shankar Subramaniam
Team Leader: Alberto Passalacqua

Associate Director: Dennis Vigil
Program Coordinator: Jan Seibel
CoMFRE Multiphase Flow Applications

- Fluidized Beds
- Bioeconomy
- Organic Solar Cells
- Specialty Refrigerants
- Pharmaceuticals
- Bio-sensors
- Bioreactors
- Concrete Design
- Wastewater Treatment
- 3D Printing
- Fabrication with Microfluidics
- Power Plants
- Food-Energy-Water + Waste Nexus
- CO₂ Harvesting

Iowa State University
Center for Multiphase Flow Research and Education (CoMFRE)
January 15, 2019
Computer Aided Modeling and Design

Application Focus Areas
- GPU-accelerated CAD
- Geometric Modeling
- Biomechanics
- Cardiac Modeling
- Volume Rendering and Visualization

Machine Learning for Thermo-Fluid Applications

Forward simulation is tractable, while solving inverse problem (design of microfluidic channels) is significantly harder

Using Deep Convolutional Neural Network to extract features to generate pillar sequence

Prediction of particle clustering using 3D Deep Convolutional Neural Networks
Multiscale Modeling and Optimization

Multiscale modeling of morphology evolution of multi-component systems as function of processing conditions in complex geometries:
- Crystallization vs Phase separation
- Multiple solvents
- Various evaporation rates
- Flow conditions

Tools for adaptive exploration and optimization
Given multiscale models that account for processing conditions and molecular architecture, rapid and autonomous exploration of the design space to identify promising configurations. Uses ideas from surrogate modeling and machine learning.

Optimal Sensor Placement Under Uncertainty
Rapid detection, and localization of contaminants/components

- nonlinear evolution under complex, uncertain flow fields can be replaced by linear evolution of density propagated by Perron-Frobenious (PF) operator
- Opens up development of fast and efficient prediction, estimation, and control strategies
- Linear nature of framework allows use of intuition from linear system to nonlinear analysis

Example of using the PF operator for sensor placement: Sensors placed based on the criteria of maximizing the observability
Thus accounting for ALL possible release scenarios
PF operator turns this into a convex optimization problem

Sensor placement under geometric variations, sensing constraints, location constraints
Multiphase Turbulent Flows

- Relevant Problems
 - Separation on smooth or rough blades
 - DES/LES with heat transfer
 - mixing

- Computations
 - RANS/LES/DES
 - Inverse modeling/M.L.

- Modeling
 RANS/DES/LES, data-driven

Turbulent Mixing and Reacting Flows
Granular Flows

Motivation
Continuum models for granular materials fail in the vicinity of regime transitions.

Approach
Close macroscopic stress using microscopic variables accounting for structure.

Accomplishments
Stress models which perform well for canonical flows across the transition.

Significance & Impact
- Such models are important for industrial applications.
- Local kinematic variables may be insufficient to characterize stress in granular systems.

Hopper Discharge

Motivation
- Predictable discharge of granular materials stored in silos or hoppers is critical to many industries.
- Need physics-based understanding to extend to wider range of problems.

Approach
- Continuum model simulation is used to predict discharge.
- Discrete element method (DEM) is also used for comparison.
- Use DEM simulation results to inform continuum models.
Gas-Liquid and Bubbly Flows

Fluidized Beds and Gas-Particle Reacting Flows
Heat and Mass Transfer in Gas-Particle Flows

Motivation
Effects of walls and entrance on heat and mass transfer models for multiphase CFD simulations

Accomplishments
Simulation of heat transfer in a fixed particle bed in a duct

Significance & Impact
- Extension of heat and mass transfer models to account for wall effects
- Entrance effect on the computation of mean quantities such as Nusselt number and drag force

PR-DNS of Gas-Particle Systems

Theme
- Particle-resolved direct numerical simulations to gain insight into microscale flow physics
- Use PUReIBM data in canonical gas-solid flows to quantify unclosed terms in closures for gas-solid flow

Significant Accomplishments
1. Pseudo-turbulence in gas-solid flow
2. Hydrodynamics and heat transfer in clustered configurations
3. Heat and mass transfer in gas-solid flow
4. Validate PR-DNS with experiments
Multiphase Reactors

- Eulerian-Eulerian Gas-Liquid and Liquid-Liquid CFD Simulation
 - Taylor-Couette flow
 - Interphase mass transport
 - Yield-stress and shear thinning fluids
 - Droplet/Bubble coagulation and breakup
- 3D Spectral Radiation Transport Simulations
- Photobioreactors
- Monte-Carlo/Brownian-Dynamics Simulation of Aggregation/Breakup
 - Fractal morphology
- Population Balance Modeling – Analytical Solutions and Scaling Analysis
 - Self-preserving size distributions
 - Aggregation/breakup kernels characterized by homogeneity indices

Compressible Flow and Gas Atomization
OpenQBMM – www.openqbmm.org

What is OpenQBMM?
A suite of libraries and solvers for OpenFOAM® to implement quadrature-based moment methods.

Features
• Robust
 › Automatic enforcement of moment realizability
 › Moment-preserving advection schemes
 › Realizable integration of stiff source terms
• Validated
 › Test-case provided for each core component
 › Validation cases provided as example application for solvers

What problems can it solve?
- Nanoparticle formation (St << 1)
- Gas-liquid systems with coalescence and breakup (St = O(1))
- Polysperse particulate systems (dense and dilute flows) (St >> 1)
- Full range of Stokes numbers

Verification of OpenQBMM

OpenQBMM twoPhaseEulerFoam

H = 0.13 m

H = 0.37 m
Families of problems of interest

- **Population balance equations**
 - Non-inertial particles ($St \to 0$)
 - Turbulent mixing
 - Reacting flows

- **Gas-liquid systems**
 - Small inertia ($St < 1$)
 - Coalescence, breakup
 - Free surfaces

- **Gas-solid systems**
 - Large particle inertia ($St \gg 1$)
 - Particle trajectory crossing
 - Nearly packed regions

Experimental Resources
Experimental Ranges and Example Activities

- **Size:** Nanoscale to meters
- **Time:** fs/ps resolution to time-average
- **Reactions:** reacting and nonreacting flows
- **Recent and current activities:**
 - Biomaterial and hydrogel synthesis
 - Combustion system analysis
 - Energetic material synthesis
 - Flow through porous media
 - Gas-liquid and gas-solid hydrodynamics
 - Particle assembly
 - Particle-particle mixing
 - Spectroscopy studies
 - Spray characterization

Unique Equipment

- Detonation chamber
- **High-speed and stereo imaging**
 - 20 kHz at full frame, faster at reduced frame size
 - Digital inline holography
 - Shadowgraphy
- **Laser diagnostics**
 - hybrid fs/ps coherent anti-Stokes Raman scattering
 - high-speed spectroscopy
 - PDPA/LDV
 - kHz to MHz-rate PIV and fluorescence
- **3D printing**
 - energetics, hydrogels, polymers, etc.
- **Video microscopy**
- **X-ray flow visualization**
 - X-ray radiography, stereography, and computed tomography
Optical Video Microscopy

Capabilities
- Particle Image Velocimetry
- Nanoparticle Tracking

Facilities
- Two fluorescence microscopes
- Dedicated computers for video and image analysis
- Syringe pumps to control fluid injection
- Plasma bonding for polymer microchannels

Applications
- Multiphase Flow in Porous Media
- Measurements of Viscoelasticity in Biomaterials

Polymer Processing

Capabilities
- Biocompatible Hydrogels
- Structured Polymer Composites

Facilities
- Wet lab facilities for material processing
- Electrical test equipment for assembling filler particles in polymer composites
- One 3D printer for dedicated prototyping
- Second 3D printer for material deposition

Applications
- 3D Printing of Multiple Materials
- Separation of Biocompatible Hydrogel Materials
Fluorescence and advanced imaging for phase discrimination and droplet measurements

Simultaneous imaging of condensed phase and vapor phase products of biomass pyrolysis

Liquid/vapor discrimination in jet fuel sprays

Digital inline holography and PDPA/LDV characterization of droplet sizing of multicomponent droplet physics

Multi-component fuel effects at high P (50 bar), high T (800-2000 K)

Ultrafast lasers for non-equilibrium systems, precise temperature, and velocimetry

Hybrid fs/ps coherent anti-Stokes Raman scattering (CARS)

Atmospheric-pressure plasma systems

Molecular tagging velocimetry (FLEET)

Mapping the wave structure of supersonic detonations

Dedic et al., Optica, 2017
Energetic Materials Combustion Lab (EMCL)

Research Focus: The development of energetics with unique properties that enable next generation energetic devices (propulsion systems, pyrotechnics, explosives) more favorable properties (e.g. performance, ‘green’ combustion, controllable combustion).

Topical Expertise

- Materials Engineering
- Combustion/Propulsion
- Spectroscopy/Laser Diagnostics
- Electromagnetics

Experiment Capabilities

- **Materials Synthesis/Characterization**
- **Combustion Test Facilities**
- **Spectroscopy/Laser diagnostics**
- **Electromagnetic Combustion Enhancement**

Experimental Facilities Overview

- ~1500 ft² research space, shared with combustion/diagnostics faculty (Michael)
- Material characterization (CIF, MARL, Ames Lab)
- Energetic material combustion/performance evaluation

Left: 500 lbf static rocket motor stand (left).

Right: 125 ft³, ~10 g TNT equivalent detonation chamber, developed for laser temperature/speciation of detonations (Michael/Sippel)

Synthesis/Characterization

Material synthesis

- **Energetic material synthesis**
 - Techniques: Ball milling/mechanical activation, ultrasonication, electrospray

Energetic Fabrication

- Propellant/explosive charge fabrication
- Safety characterization
- 3D printed energetics (current effort)

Combustion Test Facilities

High-Heating Rate Ignition

- Custom fabricated pulse mode electronics systems capable of up to 1.5 MW heating
- Linear heating up to 10⁷ C/s

Windowed high-pressure combustion vessel experiments

- Remotely operable vessels (200 bar)
- Configurable for laser ignition, high-heating rate filament ignition or electric field-flame interaction

Temperature time history of a nickel chromium ignition filament

Energetic Fabrication

- Propellant/explosive charge fabrication
- Safety characterization
- 3D printed energetics (current effort)

3D printed energetics (current effort)

Electromagnetic Combustion Enhancement

Microwave-Augmented Combustion Cavities

- 2.45 GHz S-band optically accessible cavities
- Sources: 1 kW continuous wave and 50 kW pulsed (~0.5 to 2 µs duration, 1% duty cycle)

Dielectric property measurement

- Vector network analyzer (500 MHz to 30 GHz)
- Airline (broadband) and cavity insertion (narrow band) property measurement hardware
- Calibration sets for S-band and X-band wavelengths

Energetic Materials Combustion Lab (EMCL) Spectroscopy/Laser Diagnostics

Time/temperature-resolved speciation

- DSC/TGA with online FTIR/MS
- High-speed (1 MHz) quantum cascade IR (9.5-10.5 µm) laser absorption
- VIS spectroscopy (300-900 nm, 10 Hz)

Temperature/emissivity measurement

- High-speed NIR spectroscopy (1.3 kHz, 1-4 µm)
- Two-color video pyrometry (10 kHz)

Above: Left, center: IR absorption speciation of evolved gas products from heating of a thermit.

Above: Right: Time-resolved quantum cascade IR absorption of methanol.

Spectroscopy/Laser Diagnostics

Temperature/emissivity measurement

- High-speed NIR spectroscopy (1.3 kHz, 1-4 µm)
- Two-color video pyrometry (10 kHz)

Above: Left: high-speed video and phase-locked two-color video pyrometry temperature measurement of a solid propellant flame under 60 Hz microwave excitation.

Above: Right: Electron micrograph of NaN₃ nano-decorated aluminum fuel

Energetic Materials Combustion Lab (EMCL) Electromagnetic Combustion Enhancement

Dielectric property measurement

- Vector network analyzer (500 MHz to 30 GHz)
- Airline (broadband) and cavity insertion (narrow band) property measurement hardware
- Calibration sets for S-band and X-band wavelengths

Above: Diagram of microwave augmented combustion cavity (left) and electric field distribution within the cavity (right).

Above: Left: Video of microwave-augmented combustion of composite solid propellants (several formulations), aluminized and unaluminized containing sodium nitrate dopant. 1 kHz light emission acquisition
X-ray flow visualization of gas-solid and gas-liquid flows

X-ray radiography:
Right, high-speed images of a 15.24 cm dia. fluidized bed with a single intruder particle. Images acquired at 1000 FPS and played back at 40 FPS.

X-ray stereography:
X-ray particle tracking in a binary fluidized bed. One particle is tagged to distinguish it in mutually perpendicular X-ray projections to track position AND orientation as a function of time.

X-ray computed tomography:
X-ray CT imaging of a 21 cm diameter gas-sparged stirred-tank reactor showing the local time-average gas holdup in a vertical slice through the STR center plane and several horizontal planes.

X-ray CT reconstruction of the fluidized bed aeration region.

Particle-particle mixing

Optical visualization:
• 3D print mixer with post-processing to produce optically accessible mixer.
• Time-sync 4 video projections and edit into a single video.

X-ray stereography:
X-ray particle tracking in a double-screw mixer.

X-ray computed tomography:
X-ray CT imaging to quantify mixing and segregation in binary (biomass-glass beads) granular systems.

Double-screw mixer video with biomass (brown) and glass beads (gray).
Collaborating with Argonne National Lab: Advanced X-ray imaging using the Advanced Photon Source

High-speed white beam imaging:
- \(\text{Ra} = 1,000 \)
- \(\text{Re} = 90,000 \)
- \(\text{SR} = 1 \)
- Image acquisition frame rate: 10,000 fps
- Image playback frame rate: 10 fps

High-speed focused beam imaging:
- Data acquisition rate: 6.25 MHz for 10 s
- \(\text{Ra} = 1,000 \)
- \(\text{Re} = 16,700 \)
- \(\text{SR} = 0 \)

Equivalent path length (EPL) measures

CoMFRE Summary

- ISU has unique computational and experimental capabilities in the area of multiphase flows:
 - Range of length and time scales
 - Creeping to turbulent flow
 - Reacting and nonreacting systems