IOWA STATE UNIVERSITY College of Engineering

Quantifying Air Entrainment at the Gas-Liquid Interface in Stirred Tank Reactors

Mohammed Y. Al-Subaey, Alberto Passalacqua, and Theodore J. Heindel

Center for Multiphase Flow Research and Education Department of Mechanical Engineering Iowa State University Ames, IA 50011-2161 USA

Introduction

- A Stirred Tank Reactor (STR) is a mixing system used in many process industries, including foods, cosmetics, and chemicals.
- Also used in industrial applications, such as: absorption, oxidation, hydrogenation, chlorination, carbonylation, and fermentation.

$$Re = \frac{ND^2}{v}$$

- N: impeller speed
- D: impeller diameter (75.6 mm)
- v : Kinematic Viscosity (1.0034 mm²/s)

IOWA STATE UNIVERSITY

College of Engineering

Air Entrainment Phenomenon

 Air entrainment is a phenomenon that occurs when air is introduced to a system due to the motion of fluids. In general, air entrainment occurs in different applications, such as a drop falling on a liquid surface, open channel flows in hydraulic jumps, and at any air-liquid interface with sufficient shear.

Source: R. G. Mali and A. W. Patwardhan, "Characterization of onset of entrainment in stirred tanks," *Chem. Eng. Res. Des.*, vol. 87, no. 7, pp. 951–961, Jul. 2009, doi: 10.1016/j.cherd.2009.01.010. Cited in: P. Luo, J. Wu, X. Pan, Y. Zhang, and H. Wu, "Gas-liquid mass transfer behavior in a surface-aerated vessel stirred by a novel long-short blades agitator," AIChE J., vol. 62, no. 4, pp. 1322–1330, Apr. 2016, doi: 10.1002/aic.15104.

IOWA STATE UNIVERSITY

College of Engineering

3

Motivation

- Air entrainment is a complex phenomenon that occurs naturally or by operating machines (such as STRs), which could affect the efficiency of a system.
- Under each STR condition, instabilities may cause air entrainment and alter flow regimes.
- This can benefit or disturb industrial processes such as metal pretreatment and waste treatment. For instance, dispersing solid particles into molten metal as well as having a mixing pattern to some extent.

Experimental Setup

IOWA STATE UNIVERSITY College of Engineering

At Re = 42700 (450 RPM)

C/H = 0.72 C/H = 0.60 C/H = 0.48 C/H = 0.36

IOWA STATE UNIVERSITY

College of Engineering

COMFRE Center for Multiphese Flow Research and Education

6

College of Engineering

8

Center for Multiphase Flow Research and Education

1

	OWA ollege	STATE UNI	VERSITY	12	Cer	COMFRE Inter for Multiphase Flow esearch and Education
	·	28500 (300 RPM)	33200 (350 RPM)	38000 (400 RPM) Re	42700 (450 RPM)	47500 (500 RPM)
	0.36	Almost no air entrainment	Surface Shearing + Small Vortex	Surface Shearing + Medium Vortex	Surface Shearing + Medium Vortex	Surface Shearing + Medium Vortex
C/H	0.48	Almost no air entrainment	Surface Shearing + Small Vortex	Surface Shearing + Small Vortex	Surface Shearing + Small Vortex	Surface Shearing + Medium Vortex
	0.60	Almost no air entrainment	Surface Shearing + Small Vortex	Surface Shearing + Small Vortex	Surface Shearing + Small Liquid Fall	Surface Shearing + Liquid Fall
	0.72	Almost no air entrainment	Surface Shearing	Surface Shearing	Surface Shearing + Liquid Fall	Surface Shearing + Liquid Fall

At C/T = 0.60, Re = 47500 (500 RPM)

College of Engineering

Conclusion

- Impeller clearance distance and speed impacts producing different flow conditions.
- The distance between the impeller and the gas-liquid interface controls the gas holdup and the depth of the air entrained in the system.
- Bubble size varies based on air entrainment type.

Future Work

- Use X-ray computed tomography (CT) to quantify gas holdup at different impeller speeds and clearance distances.
- Quantify the depth of air entrained at different clearance distances.
- Use image reconstruction to identify possible flow regimes and air entrainment types as the impeller gets closer to the surface.
- Understand the behavior of the gas-liquid interface.
- Estimate bubble size distribution for each condition.

Thank You for Listening

Questions?

IOWA STATE UNIVERSITY

College of Engineering

